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Abstract In this article, the molecular average polarizabil-
ity α, the energy of the highest occupied molecular orbital
EHOMO, the total thermal energy Ethermal, and the total
entropy S were used to correlate with glass transition
temperature Tg for 113 polymers. The quantum chemical
descriptors obtained directly from polymer monomers can
represent the essential factors that are governing the nature
of glass transition in polymers. Stepwise multiple linear
regression (MLR) analysis and back-propagation artificial
neural network (ANN) were used to generate the model.
The final optimum neural network with 4–[4–2]2–1
structure produced a training set root mean square error
(RMSE) of 11 K (R=0.973) and a prediction set RMSE of
17 K (R=0.955). The results show that the ANN model
obtained in this paper is accurate in the prediction of Tg
values for polymers.
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Introduction

The most familiar and important property of polymeric and
composite material is the glass transition temperature, Tg.
Tg determines temperature windows for processing and
utilizing these material and is a prerequisite for the
prediction and understanding of the mechanical and other

properties, such as heat capacity, coefficient of thermal
expansion, and viscosity [1]. Tg is generally determined
from two main types of experiments: thermodynamic
versus dynamic measurements. The former include differ-
ential scanning calorimetry (DSC), dilatometry, lateral force
microscopy, and ellipsometry. Dynamic measurements, on
the other hand, generally measure the viscosity or relaxa-
tion time as a function of temperature or frequency using
techniques, such as dielectric spectroscopy, neutron scatter-
ing, solvation dynamics, and nuclear magnetic resonance
[2]. Tg is difficult to determine experimentally and still is an
unresolved problem [1–3].

Numerous researchers have attempted to predict Tgs for
polymers on the basis of quantitative structure–property
relationships (QSPRs). According to the view of Katritzky
et al., there are two kinds of approaches, the empirical and
the theoretical [4]. Empirical methods correlate the target
property with other physical or chemical properties of the
polymers, for example, group additive properties (GAP) [5].
The GAP method is purely empirical approach and limited to
systems composed only of functional groups that have been
previously investigated. Furthermore, it is only approximate,
since this approach fails to account for the presence of
neighboring groups or conformational influences.

The most widely referenced model of the theoretical
estimations has been produced by Bicerano [6]. Bicerano
produced a regression model (R=0.9749, s=24.65 K) to
relate Tg with the solubility parameter and the weighted
sum of 13 structural parameters for the data set of 320
polymers. But he has not used external data set compounds
to validate this model.

Katritzky et al. [7] introduced a mode with R2 of 0.928
for 22 medium molecular weight polymers using four
parameters. After that work, Katritzky et al. [4] applied the
CODESSA method to predict Tgs for 88 linear homopol-
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ymers using five parameters and generated a QSPR model
with a standard error of 32.9 K for Tgs. Cao and Lin [8]
tested the same set of 88 polymers using five descriptors in
an attempt to derive a more physically meaningful QSPR
with a coefficient of determination of R2=0.9056 and a
standard error of 20.86 K. Mattioni and Jurs [9] developed
a ten-descriptor model and an 11-descriptor model, which
were used to predict Tg values for two diverse sets of
polymers, respectively. The test sets RMSEs of the two
models are above 21 K. Chen et al. [10] introduced a
comprehensive neural network model with 28 descriptors.
The network trained with the 65 polymers was tested with
six polymers and had a training RMSEs of 17 K (R2=0.95)
and prediction average error of 17 K (R2=0.85). The model
is accurate, but there are too many descriptors included.
Generally, the number of descriptors n and the number of
samples m should satisfy following criterion: n≥5m.

The quantum chemical descriptors encode information
about the electronic structure of a molecule and thus implicitly
account for the cooperative effects between functional groups,
charge redistribution, and possible hydrogen bonding in the
polymer. Furthermore, the quantum chemical descriptors have
a clearly physical meaning. The goal of this article is to
produce a robust QSPRmodel that could predict Tg values for
113 polymers by four quantum chemical descriptors, which
are calculated from the monomers of polymers.

Materials and methods

Data set

The experimental Tg values for 113 polyacrylates and
polystyrenes are listed in Table 1 [6, 11]. The entire set
contains a wide range of Tg values (198 K∼389 K) and is
characterized by a high degree of structural variety. The
functional groups presented in the side chains include
halides, acetates, ethers, hydrocarbon chains, aromatic,
nonaromatic rings, and so on. The experimental Tg value in
Table 1 are divided into a training set and a prediction set.
The training set includes 58 polyacrylates; while the
prediction set includes 23 polyacrylates and 32 polystyrenes.

Quantum chemical descriptors

It is impossible directly to calculate descriptors for the entire
molecule because all polymers have wide molecular weight
distributions and possess high molecular weights. All the
properties depend on the chemical structure of the polymer
molecule, and all this structure is conditioned by the monomer
structure. The properties of polymers are correlated with their
monomer structure [9, 13–16]. To calculate the descriptors,
the polymers were represented by their corresponding

monomers. For example, the structure used to calculate
descriptors for poly(benzyl acrylate) is the benzyl acrylate
molecule. The calculated model is shown in Fig. 1.

Density functional theory (DFT) has become increasing-
ly popular in the calculation of quantum chemical descrip-
tors used for the QSPR studies [12–16]. There are two
important reasons for this phenomenon. One is its lower
computational cost, formally scaling as N3 (with Coulomb
fitting), where N is the number of basis functions. The other
is the fact that DFT includes the effects of electron
correlation at some reasonable level. The combination of
lower computational cost with reasonable accuracy com-
pared to other approaches has led to the successful
application of the DFT method to the prediction of a broad
range of properties of molecules in the ground state. Thus,
we chose DFT method to calculate the quantum chemical
descriptors with the Gaussian 03 [17] program, at the
B3LYP level of theory with 6-31G(d,p) basis set.

All of the geometries of the monomers were fully
optimized without applying symmetry or structural con-
straints. This was accomplished by using the default Gaussian
convergence criteria. All of the optimized structures were
characterized as true local energy minima on the potential
energy surfaces, without imaginary frequencies. Vibrational
frequencies and thermodynamic properties of the monomers
were calculated applying the ideal gas, rigid rotor, and
harmonic oscillator approximations [18–20].

Thermodynamic parameters, such as the total energy ET,
the total thermal energy Ethermal, the heat capacity at constant
volume Cv, and the total entropy S can express the size of the
molecular. The energy of the lowest unoccupied molecular
orbital (ELUMO) and the energy of the highest occupied
molecular orbital (EHOMO) are very popular quantum
chemical descriptors. The molecular average polarizability
α and the molecular dipole moment µ are used widely in the
QSPR studies. The most positive net atomic charge on
hydrogen atoms in a molecule (q+) and the net charge of the
most negative atom (q−) were also calculated. In addition, the
molecular weight of a monomer (MMON) should also be
considered [21, 22]. Therefore, we calculated the 11 quantum
chemical descriptors, ET, Ethermal, Cv, S, α, µ, ELUMO,
EHOMO, q

+, q−, andMMON, to correlate with Tgs of polymers.
The parameters Ethermal (=E

t+E r+E v+E e ), Cv ¼ C t
vþ

�
C r

v þ C v
v þ C e

vÞ and S (=S t+S r+S v+S e ) are the total
internal thermal energy, the total heat capacity, and the total
entropy, respectively [20], and all are the contributions from
molecular translation, rotational motion, vibrational motion,
electronic motion, at the condition T=298.150 K and P=
1.00000 atm. A larger of the descriptors S or Ethermal stands
for a larger atomic numbers in the calculated model. The
molecular average polarizability α is defined as:

a ¼ axx þ ayy þ azz

� ��
3 ð1Þ
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Table 1 Quantum chemical descriptors and Tg values for 113 polymers a

No. of polymers α/au EHOMO/Hartree Ethermal/kcal mol−1 S/Cal mol−1 K−1 Tg/K (exp) Tg/K (calc)

The training set

1 Poly(benzyl acrylate) 105.042 −0.24907 117.824 108.925 279 268

2 Poly(4-biphenyl acrylate) 167.259 −0.22024 152.449 123.241 383 374

3 Poly(butyl acrylate) 82.019 −0.26938 120.240 102.732 219 239

4 Poly(sec-butyl acrylate) 81.396 −0.26855 119.907 100.848 250 241

5 Poly(2-tertbutylphenyl acrylate) 138.779 −0.23613 172.916 122.584 345 335

6 Poly(4-tertbutylphenyl acrylate) 143.255 −0.23026 172.831 124.891 344 343

7 Poly(2-chlorophenyl acrylate) 105.860 −0.24497 93.469 105.414 326 322

8 Poly(4-chlorophenyl acrylate) 108.600 −0.24021 93.441 105.773 331 337

9 Poly(4-cyanobenyl acrylate) 123.453 −0.26401 118.033 117.383 317 335

10 Poly(2-cyanoisobutyl acrylate) 92.828 −0.28625 120.003 111.422 324 320

11 Poly(2-cyanoethyl acrylate) 71.311 −0.28828 83.085 98.117 277 293

12 Poly(2-cyanohexyl acrylate) 115.466 −0.28603 157.911 127.462 358 353

13 Poly(4-cyanophenyl acrylate) 115.141 −0.25700 98.956 108.112 363 349

14 Poly(2-cyanoisopropyl acrylate) 81.903 −0.28686 100.872 100.909 339 336

15 Poly(1,3-dimethylbutyl acrylate) 103.263 −0.26772 157.118 114.092 258 240

16 Poly(dodecyl acrylate) 172.621 −0.26895 270.224 161.452 270 276

17 Poly(2-ethoxyl-carbonyl-phenyl acrylate) 134.102 −0.25498 147.054 129.216 303 286

18 Poly(3-ethoxyl-carbonyl-phenyl acrylate) 138.312 −0.24790 147.136 129.732 297 306

19 Poly(3-ethoxypropyl acrylate) 97.854 −0.25572 142.485 117.604 218 213

20 Poly(ethyl acrylate) 59.445 −0.27021 82.710 87.519 249 250

21 Poly(fluromethyl acrylate) 48.156 −0.28569 59.951 86.983 288 276

22 Poly(1H,1H-heptafluorobutyl acrylate) 80.571 −0.28980 88.568 132.397 243 240

23 Poly(2,2,3,3,5,5,5-heptafluoro-4-oxapentyl acrylate) 84.415 −0.28998 91.937 137.245 218 236

24 Poly(heptafluoro-2-propyl acrylate) 69.691 −0.30094 69.417 120.562 283 278

25 Poly(2-heptyl acrylate) 115.371 −0.26786 176.112 123.610 235 237

26 Poly(hexadecyl acrylate) 216.907 −0.26987 345.101 191.160 308 311

27 Poly(hexyl acrylate) 104.625 −0.26913 157.731 117.443 216 236

28 Poly(isobutyl acrylate) 81.468 −0.27020 119.910 101.768 249 242

29 Poly(6-cyano-4-thiahexyl acrylate) 124.673 −0.23985 141.211 133.654 215 221

30 Poly(3-methoxybutyl acrylate) 96.879 −0.25474 142.256 116.236 217 213

31 Poly(3-methoxycarbonylphenyl acrylate) 126.873 −0.24862 128.504 122.656 311 308

32 Poly(4-methoxycarbonylphenyl acrylate) 129.709 −0.24862 128.520 122.928 340 322

33 Poly(4-methoxyphenyll acrylate) 114.657 −0.21329 120.781 111.930 324 312

34 Poly(3-methoxypropyl acrylate) 86.310 −0.25777 123.826 109.713 198 218

35 Poly(2-methylbutyl acrylate) 92.579 −0.26986 138.728 109.260 241 239

36 Poly(3-methylbutyl acrylate) 92.725 −0.26921 138.716 108.970 228 238

37 Poly(2-methylpentyl acrylate) 103.950 −0.26970 157.420 117.561 235 235

38 Poly(2-naphthyl acrylate) 143.909 −0.21552 129.696 111.443 358 375

39 Poly(1H,1H-nonafluoro-4-oxahexyl acrylate) 95.506 −0.29174 101.507 151.564 224 228

40 Poly(1H,1H-nonafluoropentyl acrylate) 91.339 −0.29042 98.068 144.930 236 231

41 Poly(1H,1H,5H-octafluoropentyl acrylate) 91.589 −0.29030 103.037 140.941 238 235

42 Poly(1H,1H-pentafluropropyl acrylate) 70.629 −0.29156 78.397 110.190 247 272

43 Poly(3-pentyl acrylate) 91.837 −0.26821 138.740 108.111 267 236

44 Polyphenylethyl acrylate) 116.393 −0.24572 136.641 114.711 270 287

45 Poly(propyl acrylate) 70.708 −0.26980 101.479 95.313 236 244

46 Poly(tetradecyl acrylate) 195.337 −0.26893 307.721 176.002 297 293

47 Poly(4,4,5,5-tetrafluoro-3-oxapentyl acrylate) 85.830 −0.28477 106.279 127.895 251 237

48 Poly(3-thiabutyl acrylate) 88.221 −0.22558 103.134 107.470 213 209

49 Poly(5-thiahexyl acrylate) 110.871 −0.21928 140.699 122.195 203 208

50 Poly(3-thiapentyl acrylate) 100.519 −0.22342 122.006 115.396 202 209
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Table 1 (continued)

No. of polymers α/au EHOMO/Hartree Ethermal/kcal mol−1 S/Cal mol−1 K−1 Tg/K (exp) Tg/K (calc)

51 Poly(m-totyl acrylate) 110.144 −0.23498 117.089 108.110 298 311

52 Poly(o-totyl acrylate) 109.332 −0.23431 117.153 106.245 325 318

53 Poly(2,2,2trifluoroethyl acrylate) 70.325 −0.28188 88.342 108.485 263 250

54 Poly(5,5,5-trifluoro-3-oxapentyl acrylate) 86.228 −0.28028 110.515 123.554 235 233

55 Poly(1H,1H-tridecafluoro-4-oxaoctyl acrylate) 119.584 −0.29223 120.364 184.283 205 212

56 Poly(1H,1H-undecafluorohexyl acrylate) 104.518 −0.29211 107.429 159.717 234 224

57 Poly(5-cyano-3-thiapentyl acrylate) 111.987 −0.23890 122.367 125.773 223 217

58 Poly(4-butoxycarbonylphenyl acrylate) 164.925 −0.24715 184.658 146.279 286 289

The prediction set

59 Poly(2,4-dichlorophenyl acrylate) 119.488 −0.24737 88.144 112.731 333 352

60 Poly(4-cyanobutyl acrylate) 93.987 −0.27900 120.706 113.004 233 263

61 Poly(5-cyano-3-oxapentyl acrylate) 98.335 −0.28148 124.151 121.154 250 253

62 Poly(3-dimethylaminophenyl acrylate) 128.426 −0.19992 147.182 117.786 320 341

63 Poly(4-ethoxyl-carbonyl-phenyl acrylate) 141.467 −0.24785 147.156 129.816 310 321

64 Poly(2-ethoxyethyl acrylate) 86.517 −0.25952 123.705 110.322 223 218

65 Poly(2-ethylbutyl acrylate) 102.837 −0.26968 157.649 115.518 223 239

66 Poly(5,5,6,6,7,7,7-heptafluoro-3-oxaheptyl acrylate) 107.060 −0.27957 129.652 153.698 228 212

67 Poly(heptyl acrylate) 115.931 −0.26904 176.478 125.055 213 237

68 Poly(1H,1H,3H-hexaflurobutyl acrylate) 79.567 −0.28963 93.358 124.149 251 251

69 Poly(isopropyl acrylate) 70.355 −0.26905 101.103 93.350 270 246

70 Poly(2-methoxycarbonylphenyl acrylate) 123.122 −0.25377 128.438 121.514 319 292

71 Poly(2-methoxyethyl acrylate) 74.981 −0.26178 105.049 102.458 223 225

72 Poly(methyl acrylate) 47.822 −0.27302 64.106 79.862 283 252

73 Poly(nonyl acrylate) 138.586 −0.26899 213.972 139.628 215 248

74 Poly(n-pentyl acrylate) 93.319 −0.26917 138.977 110.297 216 236

75 Poly(phenyl acrylate) 95.377 −0.23990 98.731 98.585 330 281

76 Poly(7,7,8,8-tetrafluoro-3,6-dioxaoctyl acrylate) 112.556 −0.27684 147.337 150.245 233 211

77 Poly(4-thiahexyl acrylate) 111.787 −0.21962 140.789 122.912 197 209

78 Poly(4-thiapentyl acrylate) 99.486 −0.22164 121.910 115.321 208 207

79 Poly(p-totyl acrylate) 111.916 −0.22982 117.097 109.081 316 318

80 Poly(8-cyano-7-thiaoctyl acrylate) 146.820 −0.24237 178.685 146.668 214 228

81 Poly(2-cyanoheptyl acrylate) 126.692 −0.28594 176.635 134.705 389 368

82 Poly(4-benzoylstyrene) 167.495 −0.23162 149.183 116.701 371 375

83 Poly(2-butoxycarbonylstyrene) 146.767 −0.22952 173.984 127.503 339 343

84 Poly(4-butoxycarbonylstyrene) 152.810 −0.23153 173.941 129.775 349 349

85 Poly(5-tert-butyl-2-methystyrene) 139.467 −0.21569 180.527 114.543 360 364

86 Poly(4-sec-butylstyrene) 131.441 −0.21512 162.550 111.917 359 361

87 Poly(4-butyrylstyrene) 136.877 −0.23317 151.187 116.568 347 361

88 Poly(4-diethylcarbamoylstyrene) 154.879 −0.22362 181.707 125.817 375 362

89 Poly(4-ethoxycarbonylstyrene) 129.386 −0.23184 136.461 113.511 367 360

90 Poly(2-ethoxymethylstyrene) 117.898 −0.22439 147.678 107.352 347 338

91 Poly(4-ethoxymethylstyrene) 114.655 −0.20129 128.734 103.134 359 353

92 Poly(4-hexanoylstyrene) 160.337 −0.23303 188.674 131.435 339 351

93 Poly(2-hexyloxycarbonylstyrene) 162.703 −0.23653 211.184 142.475 318 288

94 Poly(4-hexyloxycarbonylstyrene) 175.436 −0.23145 210.769 139.390 339 344

95 Poly[4-(2-hydroxybutoxymethyl)styrene] 149.245 −0.21723 188.484 133.091 319 321

96 Poly(4-[(1-hydroxyimino)-2phenethyl]styrene) 186.354 −0.21733 178.752 133.980 384 371

97 Poly(4-isobutoxycarbonylstyrene) 149.367 −0.23506 173.457 128.704 363 343

98 Poly(2-isopentyloxycarbonylstyrene) 150.620 −0.23669 192.289 131.436 341 320

99 Poly(2-isopentyloxymethylstyrene) 152.544 −0.22367 203.669 128.782 351 339

100 Poly(4-isopropoxycarbonylstyrene) 140.645 −0.23152 154.847 119.668 368 360
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where αxx, αyy, and αzz reflect electronic perturbation in the
x-, y-, and z-coordinates, respectively.

Variable selection

Stepwise multiple linear regression has proved to be an
extremely useful computational technique in seeking an
optimum linear combination of variables from the subsets
of the N variables. The technique only adds one parameter
to a model at a time and always in the order from most
significant to least significant. Some important statistical
parameters were used to valuate the variables. The t test
measures the statistical significance of the regression
coefficients. The larger t test absolute values indicate the
relatively more significant regression coefficients. The
variance inflation factors (VIF) computed as VIF=(1−
R2)−1 (where R2 is the coefficient of determination) can be
used to identify whether excessively high multicollinearity
coefficients exist among the descriptors; VIF<10 indicates
tolerable colinearity among the descriptors, i.e., multi-
collinearity coefficients for descriptors do not exceed
0.90. In general, a descriptor is a significant descriptor
and can be acceptable when the Sig. value of the descriptor
is less than or equal to 0.05 (default level of significance).
The detailed theory of multiple linear regression can be
found in the mathematical textbook [23].

Artificial neural network

Artificial neural network (ANN) has some remarkable
properties such as self-learning and adaptation, a resistance
to noise, a high degree of fault tolerance, and is suitable for
nonlinear problems with complex factors. It is powerful for
exploiting information from a vast amount of experimental
data through learning, and especially useful for quantitative
prediction [21, 22, 24–27].

Figure 2 shows the architecture of back-propagation
neural network (BPNN) with the three-layer, i.e., input,
output, and hidden layers [21, 22]. Hidden layers can
contain one or several layers for its practical application.
Each layer has different numbers of neurons (or nodes).
Each neuron (or node) in the network is influenced by those
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Fig. 1 The calculated models of polymers

Table 1 (continued)

No. of polymers α/au EHOMO/Hartree Ethermal/kcal mol−1 S/Cal mol−1 K−1 Tg/K (exp) Tg/K (calc)

101 Poly(2-isopropoxymethylstyrene) 128.632 −0.22340 166.050 113.885 361 344

102 Poly(4-methoxymethylstyrene) 112.976 −0.21589 128.728 105.414 350 335

103 Poly(4-octanoylstyrene) 181.743 −0.23296 226.163 146.375 323 320

104 Poly(4-phenylacetylstyrene) 176.319 −0.23442 167.585 127.103 351 372

105 Poly(4-propoxycarbonylstyrene) 137.523 −0.23482 155.003 123.233 365 340

106 Poly(4-propoxystyrene) 126.401 −0.20094 147.459 110.933 343 358

107 Poly(4-p-toluoylostyrene) 182.921 −0.22986 167.558 129.788 372 372

108 Poly(4-valerylstyrene) 148.448 −0.23311 169.937 124.098 343 357

109 Poly(4-p-anisoylstyrene) 188.513 −0.22706 171.276 129.483 376 373

110 Poly[4-(1-hydroxy-1-methylhexyl)styrene] 169.517 −0.21363 221.931 137.887 364 343

111 Poly(4-methoxy-2-methylstyrene) 113.771 −0.20135 128.720 102.278 358 352

112 Poly(2-methoxystyrene) 99.001 −0.20710 110.176 94.187 348 314

113 Poly(4-phenoxystyrene) 155.237 −0.20724 144.733 114.455 373 375

a The atomic unit of polarizability: 1au=1.648777×10−41 C2 m2 J−1 ; the unit of energy: 1 Hartree=4.3597482×10−18 J; 1 Cal=4.184 J.
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Fig. 2 Artificial neural network model (n, m, and p are the number of
input nodes, hidden nodes, and output nodes, respectively) [21, 22]
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neurons to which it is connected. For nodes in the input
layer, the output (XO) is equal to its input (Xi).

XL
Oi

¼ XL
i i ¼ 1; 2; . . . ; n; L ¼ 1; 2; . . . ; sð Þ ð2Þ

where i is ith input layer node, n is the number of input nodes,
s is the number of trained samples. For the Lth trained sample,
the net input of the jth hidden layer node yLj is expressed as:

yLj ¼Pn
i
WL

ij X
L
Oi j ¼ 1; 2; . . . ;m; L ¼ 1; 2; . . . ; sð Þ ð3Þ

Where m is the number of hidden nodes, WL
ij is a weight

from unit i to unit j in Lth trained samples. The relationship
between the input yLk and output YL

Ok of a neural element in
hidden layer can be described as follows:

YL
Ok ¼ f Y L

k

� �
k ¼ 1; 2; . . . ;m; L ¼ 1; 2; ; . . . ; sð Þ ð4Þ

where f (x) is basic sigmoid function, which possesses the
distinctive properties of nonlinearity, continuity, and differ-
entiability in (−∞, +∞). The function is expressed as:

f xð Þ ¼ 1

1þ e�x=Q
ð5Þ

where Q is the sigmoid parameter (0.9≤Q≤1.0). Similarly,
the output of the last layer node OL

1 can be obtained with
following equation.

OL
l ¼ f

Pm
j
WL

jl y
L
Oj

 !
l ¼ 1; 2; . . . ; p; L ¼ 1; 2; . . . ; sð Þ ð6Þ

The learning procedure is based on a gradient search, with a
least sum squared optimality criterion of errors (E) between
the target output (predicted) values (OL

1) for the Lth trained
sample and the actual output (measured) values (YL):

E ¼ 1
2
Ps
L¼1

OL
l � YL

� �2
L ¼ 1; 2; . . . ; sð Þ ð7Þ

The learning algorithm for the weights between the lth
output node and kth hidden node at the tth learning step is

WL
kl t þ 1ð Þ ¼ WL

kl tð Þ þ hdLl Y
L
Ok þ a0WL

kl tð Þ � a0WL
kl t � 1ð Þ

k ¼ 1; 2; . . . ;m; l ¼ 1; 2; . . . ; p; L ¼ 1; 2; . . . ; sð Þ
ð8Þ

where η is the learning rate (0<η<1), t is the number of
learning steps, and α0 is the momentum parameter (0<α0<
1). The error dLj is defined as:

dLl ¼ YL
l � OL

l

� �
f
0
xð Þ OL

l

� �
l ¼ 1; 2; . . . ; pð Þ ð9Þ

Where f ′(x) is the derivative with respect to x of the
sigmoid function. Similarly, the learning algorithm between
the ith input node and jth hidden node is

WL
ij t þ 1ð Þ ¼ WL

ij tð Þ þ hdLj X
L
Oi þ a0WL

ij tð Þ � a0WL
ij t � 1ð Þ

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m; L ¼ 1; 2; . . . ; sð Þ
ð10Þ

where dLj is

dLj ¼ Pp
a¼1

dLaW
L
aj

� �
f
0
xð Þ yLji

� �
j ¼ 1; 2; . . . ;mð Þ ð11Þ

In this work, the output parameter is the glass transition
temperature, and the number of output layer nodes P is equal
to 1. Appropriate values of these parameters aid network
learning. The training of ANNs by back-propagation in-
volves three stages [28]: (1) the feed forward of the input
training pattern, (2) the calculation and back-propagation of
the associated error, and (3) the adjustment of the weights.
When the network error E is less than the permission error
E0 (0.001 ≤ E0 ≤ 0.00001), or some limit is reached in the
number of training iterations, the training process is over.
Then, the trained neural network can be used to predict for
the test set.

The ANN architecture is described with the code [22]:
Nin–[Nh1–Nh2]e–Nout, where Nin and Nout are the element
numbers of input and output nodes, respectively; Nh1 and
Nh2 are numbers of nodes in the first hidden and the second
hidden, respectively; e is the number of hidden layers.

The sum of root mean square errors (Esum) of the training
set and the prediction set is used to valuate the accuracy of
an ANN model. Esum can be expressed as

Esum ¼ RMSETþRMSEP ð12Þ
where RMSET and RMSEP are root mean square errors
(RMSEs) of the training set and the prediction set, respec-
tively. The definition of RMSE can be found in [24, 25].The
smaller the Esum is, the higher is the predictive quality.

Results and discussion

By carrying out the correlation between the 11 descriptors
and Tgs of 58 samples in the training set (see Table 1) with
stepwise multiple linear regression (MLR) analysis [23], the
best subset of descriptors is obtained. The descriptors
include the molecular average polarizability α, the energy
of the highest occupied molecular orbital EHOMO, the total
thermal energy Ethermal, and the total entropy S, which are
listed in Table 1. The characteristics of four descriptors in
MLR model are shown in Table 2.

The four descriptors are then fed to ANN as input
parameters. Some good ANN models are obtained by
adjusting various parameters by trial and error and listed in
Table 3. Table 3 shows the model of No. 5 has the lowest
Esum value (Esum=28 K). Thus, the architecture of the final
optimum neural network is 4–[4–2]2–1, with the permission
error being 0.00001, the maximum number of epochs being
5,000, the momentum being 0.6, and the sigmoid parameter
being 0.9. The results from the optimum ANN are listed in
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Table 1 and depicted in Fig. 3, which indicate that the
predicted Tg values are close to the experimental ones. Only
two polymers, poly(phenyl acrylate) and poly(2-methox-
ystyrene), present absolute errors in prediction greater than
30 K (49 K and 34 K, respectively). Root mean square
errors (RMSEs) are 11 K (R=0.973) for the training set and
17 K (R=0.955) for the prediction set. In comparison with
previous models [4, 6–10], the present ANN model shows
better statistical quality.

Our results indicate that the ANN model developed from
the training set of polyacrylates could make prediction for
polyacrylates and polystyrenes. By convention, the struc-
tures of the prediction set cover the range of the structures
of the training set. However, in this paper, the unusual
principle for separation into training set and test sets are
carried out, and the results demonstrate the ANN model
could be extrapolated.

The four descriptors are significant descriptors from
Sig.-test (see Table 2). Furthermore, all the VIF values in
this paper are less than 10, which show the descriptors are
acceptable without “mixing” or contamination from other
descriptors.

According to the t test (in Table 2), the most significant
descriptor appearing in MLR model is the molecular
average polarizability α. Generally, the major factors
affecting the Tgs of polymers are intermolecular forces
and the chain stiffness (or mobility). Since the description α

can reflect the polarity of a molecular, the parameter Tg
increases with increasing α.

The second significant descriptor included into the
model is the total entropy S. A larger S stands for an
increase spatial conformations for the calculation model
and may lead to a larger free volume, which results in a
smaller Tg value. Therefore, Tg decreases with increasing S.

The next significant descriptor is the total thermal energy
Ethermal. The negative term associated with the descriptor in
MLR model suggests that an increase in the number of
atoms in molecular branching will lead to a corresponding
increase in free volume. The descriptor Ethermal is negative-
ly correlated with Tg, too.

The last one is the energy of the highest occupied
molecular orbital EHOMO, which carries a negative weight
in the MLR model. The HOMO and the LUMO play a
major role in governing many chemical reactions and
determining electronic band gaps in solids [29]. The energy
of the HOMO is directly related to the ionization potential
and characterizes the susceptibility of the molecule toward
attack by electrophiles. It has been shown that the small
difference between HOMO and LUMO energies usually
means that the molecular is easily polarized, which suggests
that EHOMO relates to the molecular polarity [30, 31]. Thus,
the descriptor EHOMO is correlated with Tg.

Despite many different factors affecting the Tg values of
polymers, intermolecular forces and the chain stiffness (or
mobility) are the main ones. The molecular average
polarizability α and the energy of the highest occupied
molecular orbital EHOMO can describe molecular polarity
and intermolecular forces; while the total thermal energy
Ethermal, and the total entropy S can reflect molecular free
volume and the chain stiffness (or mobility). Therefore, the
four descriptors can represent the essential factors govern-
ing the nature of glass transition in polymers.

Table 3 Root mean square errors (RMSEs) of training and prediction
using different ANN architectures

No. Architectures RMSET (K) RMSEP (K) Esum (K)

1 4–[8–4]2–1 10 21 31

2 4–[6–4]2–1 11 20 31

3 4–[4]2–1 11 18 29

4 4–[4–3]2–1 11 19 30

5 4–[4–2]2–1 11 17 28

6 4–[3]2–1 12 18 30

7 4–[3–2]2–1 12 18 30
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Fig. 3 Plot of experimental Tg(K) versus calculated Tg(K)

Table 2 The characteristics of descriptors α, ΕHOMO, Ethremal, and S
in MLR model

Descriptors Coefficients SE Sig. test t Test VIF

Constant −87.274 59.321 0.147 −1.471 –

α 3.643 0.310 0.000 11.751 8.559

EHOMO −1615.569 238.356 0.000 −6.778 2.661

Ethremal −0.988 0.139 0.000 −7.115 4.225

S −2.689 0.292 0.000 −9.216 3.402
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Conclusions

A QSPR model was developed to predict the Tg values for
polymers. Stepwise MLR analysis and back-propagation
ANN were used to generate the model after descriptors
generation. Four quantum chemical descriptors, α, EHOMO,
Ethermal, and S, obtained directly from the monomer
structures by density function theory (DFT) calculation
were selected to produce the mode. Simulated with the final
optimum ANN model, the results show that the predicted
Tg values are in good agreement with the experimental
ones, with the root mean square errors (RMSEs) being 11 K
(R=0.973) for the training set and 17 K (R=0.955) for the
prediction set. The results encourage the further application
of the ANN model to other classes of polymer.
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